Towards Enabling RAN as a Service -
The Extensible Virtualisation Layer

Joao F. Santos*, Maicon Kist*T, Jonathan van de Belt*, Juergen Rocholf, Luiz A. DaSilva*
*CONNECT - Trinity College Dublin, Ireland
{facocalj, kistm, vandebej, dasilval} @tcd.ie
TFederal University of Rio Grande do Sul, Brazil
{mkist, juergen}@inf.ufrgs.br

Abstract—Network slicing is one of the key enabling tech-
niques for 5G, allowing Mobile Network Operators (MNOs) to
support services with diverging requirements on top of their
infrastructure. The MNOs should be able to offer network
slices as a service and provide customisable and independent
virtual networks to verticals. The slicing of an end-to-end (E2E)
mobile network is divided into Core Network (CN) slicing, and
Radio Access Network (RAN) slicing. In this paper, we assess
the requirements for using radio hypervisors to enable RAN as
a Service (RANaaS). We evaluate the current state-of-the-art
on radio virtualisation with respect to these requirements and
identify the missing features. Then, we present the eXtensible
Virtualisation Layer (XVL), a software layer that provides the
missing functionality for enabling RANaaS and can be added on
top of existing radio hypervisors. We outline XVL’s architecture
and design choices, as well as evaluate its performance in terms
of the delay to provision virtual radios, the delay introduced
to forward IQ samples, and the computational overhead. Our
results show that XVL enables leveraging existing radio hyper-
visors to support RANaaS.

Keywords—Network Slicing, Radio Access Network, Virtuali-
sation, RAN as a Service, Radio Hypervisor

I. INTRODUCTION

In contrast to previous generations of mobile networks,
5G is being envisioned from the very beginning to support
a variety of different services, e.g., Enhanced Vehicular-to-
Everything (V2X), massive Internet of Things (IoT), and
industrial automation [1]. In order to cope with such diverse
network requirements, 3GPP introduced the concept of net-
work slicing for 5G, which proposes the partitioning of the
physical network infrastructure of a Mobile Network Operator
(MNO) into independent logical networks, known as Network
Slices (NSs) [2]. Each NS operates as a separate end-to-
end (E2E) network, which can be individually tailored and
configured for different purposes [3]. Network slicing creates
new business models for the mobile networks market by
enabling new ways for an MNO to monetise its infrastructure
[4]. In this way, MNOs can offer NS as a Service (NSaaS) to
provide independent and isolated virtual networks to verticals,
running on top of a shared physical network infrastructure [2].

The 3GPP defines E2E network slicing as the combination
of Core Network (CN) slicing and Radio Access Network
(RAN) slicing [5]. Both network segments can be indepen-
dently orchestrated, sliced, and combined for creating E2E
NSs [6]. As a consequence, the NSaaS paradigm is the
combination of CN as a Service (CNaaS) [7] and RAN as

a Service (RANaaS) [8]. This separation grants MNOs the
flexibility to offer: CN slices, where each vertical can define
its own authentication schemes, mobile and session manage-
ment, whilst sharing a common RAN among all clients; RAN
slices, where each vertical can specify the sub-carrier spacing,
cyclic prefix length, and handover threshold, whilst sharing
a common CN among all clients; or full E2E NSs, where
verticals can define both their own RAN and CN [4].

The slicing process is performed by an entity known as a
hypervisor, which is tailored for virtualising a particular type
of resource, e.g., network hypervisors use network resources
for creating virtual networks, and radio hypervisors use radio
resources for creating virtual radios. Currently, the virtualisa-
tion of the CN is a mature area, with network hypervisors,
e.g., FlowVisor [9] and OpenVirteX [10], being adopted in
production networks. On the other hand, RAN virtualisation
is a new research topic. There are examples of open-source
radio hypervisors available in the literature, which can create
virtual radios to realise a RAN slice, using either low-level
resources, e.g., time and frequency; or high-level resources,
e.g., Physical Resource Blocks (PRBs) and frames [11]. Albeit
paving the way to allow RAN slicing, these prototypes only
focus on enabling multiple radio slices to coexist on top of a
single physical hardware, without considering the additional
requirements for RANaaS. For instance, the lack of a radio
broker for verticals to communicate for querying the available
radio resources, requesting RAN slices, and assessing the
performance of their RAN deployment [12], prevents the
realisation of RANaaS.

In this paper, we address the functionality that is necessary
for using radio hypervisors as enablers for RANaaS. We
have developed the eXtensible Virtualisation Layer (XVL),
a software layer that implements such functionality and that
can be added on top of existing radio hypervisors. XVL
allows the negotiation of the available resources with verticals,
the creation of virtual radios on demand, and it uses cross-
platform communication libraries, making it easy to integrate
with different programming languages and Software-defined
Radio (SDR) platforms. We have integrated XVL with a radio
hypervisor, validated its ability to serve as an enabler for
RANaaS on top of current radio hypervisors, and evaluated
XVL’s performance in different scenarios.

II. RADIO VIRTUALISATION FOR RAN AS A SERVICE

One of the initial works on radio virtualisation, Virtual
Radio [12] argued for how radio virtualisation could mitigate

the slow development cycle in the wireless network industry,
advocating for the deployment of software-based base stations
with a tailored amount of radio resources and protocol stack.
Ultimately, the work of [12] proposes the use of radio
virtualisation for enabling the deployment of virtual wireless
networks on demand, years before the term RANaaS was
coined [8]. The majority of the following works on radio
virtualisation focused on creating radio hypervisors to enable
radio slicing, and ensuring isolation at a radio resource level.
The next natural step is to move from performing radio
slicing with radio hypervisors, to leveraging the capabilities of
current radio hypervisors for enabling the RANaaS paradigm.
Inspired by the initial concepts in [12], and further works on
virtualisation of wireless networks [11], [13]-[15], we devised
a list of required features for a radio hypervisor to be able to
support RANaaS.

A. Requirements for Supporting RANaaS

The providers of RANaaS, e.g., network operators or in-
frastructure providers, can have different radio resources, over
different geographical locations, and may employ different
types of pricing per band or duration, based on auctions or any
other business models [16]. Hence, the customers of RANaaS,
e.g., Mobile Virtual Network Operators (MVNOs) or verti-
cals, must be able to discover the available radio resources
and negotiate their use [12]. The interaction between radio
hypervisors and customers requires an interface for receiving
remote queries and requests. Such an interface must have a
well-defined syntax for the communication, and a clear ab-
straction for describing the available radio resources, location
and cost. Upon successful reservation of radio resources, the
radio hypervisor must be able to instantiate virtual radios on
demand, as customers may start and halt the operation of
RAN slices at will.

A radio hypervisor should be platform agnostic and sup-
port the creation of virtual radios with any Radio Access Tech-
nologies (RATs). However, different RATs not only possess
different definitions of resources but also use the medium in
various manners [14]. For example, LTE and WiMax allocate
PRBs to users and transmit continuously (downlink), whereas
WiFi and Bluetooth allocate entire frames to users and change
transmission interval according to the traffic. Therefore, it
is not possible to create a generalised resource grid for all
possible RATs and treat radio virtualisation as a scheduling
problem [12]. Instead, it should be treated as a multiplexing
problem, where: (i) the virtual radios use low-level radio
resources, bellow the PRB/frame level, e.g., centre frequency,
bandwidth, timeslot; (if) each RAN slice has complete control
over their resources; (iii) the radio hypervisor multiplexes the
virtual radios without compromising the operation of their
RATSs [11] [17]. In addition, virtual radios must be isolated
both regarding their radio resources to prevent interference
between virtual radios; and their computational resources,
e.g., different instances or processes, to ensure independence
between virtual radios.

The use of a radio hypervisor for deploying RAN slices
introduces a new layer of complexity and another point of
failure. The radio resources previously dedicated to realising
a single RAT now constitute a pool of resources shared
amongst a number of virtual radios, which in turn, are used

to provide the RANaaS. Hence, customers should be able to
assess the performance of their virtual radios for ensuring the
proper operation of their RAN deployment, and monitoring
the established Service Level Agreement (SLA) [15]. For
instance, customers should be able to query Key Performance
Indicators (KPIs) of their virtual radios, e.g., buffer sizes,
processing delay, and SINR degradation. Ideally, the prototype
implementation of the radio hypervisors should be made
available to the customers, for transparency and security [13],
and to the research community, allowing further research and
development.

Based on the aforementioned requirements, we summarise
the necessary features for a radio hypervisor to support
RANaaS:

e Resource Negotiation: to possess an interface for
querying and requesting the available resources, de-
scribing the radio resources, e.g., in terms of centre
-frequency, bandwidth, and the virtual radios, e.g.,
owner, transmitter and/or receiver capabilities.

e Dynamic Allocation: to allow the creation and de-
struction of virtual radios on demand, without inter-
rupting the operation of the radio hypervisor or other
virtual radios.

e Technology Agnostic: to employ a multiplexing tech-
nique that supports different RATSs, and does not
distort their waveforms, nor limit their medium access
techniques.

e Radio Resource Isolation: to allocate non-overlapping
radio resources to different virtual radios, and prevent
interference between virtual radios, e.g., through fil-
tering, guard bands, or guard times.

e Virtual Radio Independence: to ensure that virtual
radio instances cannot affect the operation and perfor-
mance of each other, even in case of a malfunctioning
or misbehaving virtual radio.

e Service Monitoring: to collect and provide informa-
tion about the performance of individual virtual ra-
dios, e.g., in terms of buffer sizes, and the introduced
delay and SINR degradation.

e Open-Source Prototype: to grant access to source
code of their implementation to customers and
academia.

B. State of the Art on Radio Virtualisation

We have evaluated some notable examples of radio hy-
pervisors in the literature with respect to the requirements
described in Section II-A, and Table I summarises the results
of our analysis. The majority of research efforts on RAN
slicing and radio virtualisation either focus only on particular
technologies, or do not make available their implementa-
tion [14].

One of the few works that are platform agnostic and
provides an actual open-source implementation is HyDRA
[17], a radio hypervisor for SDRs developed on top of GNU
Radio [22]. HyDRA virtualises the Radio Frequency (RF)
front-end of a single SDR to create virtual RF front-ends.

Radio Resource Dynamic Technology
Hypervisor Negotiation | Allocation Agnostic
NVS [18] - - -

Virtual WiFi [19] - v -
Orion [20] v v -
SVL [21] - - v

HyDRA [17] - - %
XVL [this work] v v v

Radio Resource | Virtual Radio Service Open-Source
Isolation Independence | Monitoring Prototype
v - - -
v _ - _
v v - -
v _ - _
v - - v
v v v v

TABLE I: Qualitative evaluation of the features necessary for radio hypervisors to support RANaaS.

Similar to the work of [21], HyDRA uses an FFT-based
technique to slice the bandwidth of a radio’s RF front-end
into virtual RF front-ends. Each virtual radio can realise
any RAT using its own virtual RF front-end. However, if
any virtual radio delays transmitting/receiving or crashes, it
will halt the operation of the radio hypervisor and all other
virtual radios. Moreover, the number of virtual radios and
their resource allocation, i.e., the amount of spectrum for
each virtual RF front-end, must be set up before the operation
of the radio hypervisor, as it is not possible to (de)allocate
a virtual radio without interrupting the radio hypervisor’s
operation. Nonetheless, HyDRA excels at radio virtualisation
for allowing multiple heterogeneous virtual radios to share
the same underlying physical radio hardware.

III. EXTENSIBLE VIRTUALISATION LAYER

In order to tackle the gaps and missing features detailed in
Section II, we have developed XVL, a cross-platform software
layer that sits on top of existing radio hypervisors. XVL works
as a wrapper, leveraging the underlying radio hypervisor’s
capabilities and providing it with the missing functionality for
supporting RANaaS. This modular design allows the radio
hypervisor to focus on the radio virtualisation, offloading
to XVL the majority of other tasks, e.g., the communi-
cation interface, resource management, and monitoring. In
the following subsections, we detail how XVL addresses
the limitations and missing features that we identified in
Section II. Namely, how XVL: provides a communication
interface for resource negotiation and allocation, supports the
creation and destruction of virtual radios on demand, ensures
their computational isolation, and allows the monitoring of
their performance.

A. Resource Negotiation and Dynamic Allocation

The XVL operates based on a client-server paradigm, with
a single server, i.e., one instance of XVL on top of a radio hy-
pervisor, serving multiple clients, i.e., verticals and MVNOs.
The clients can send messages to the server for querying in-
formation about the use of resources and requesting resources
at any time. Figure 1 depicts the process of negotiating and
using resources through XVL. Upon successful negotiation
and reservation of resources, XVL interfaces with the radio
hypervisor for creating/destroying the RAN slice. XVL has
callbacks for informing the radio hypervisor about changes in
the resource mapping and/or allocation of virtual radios, so the
radio hypervisor can instantiate a new virtual RF front-end.
Once the radio hypervisor completes the creation of the virtual
RF front-end, XVL can perform additional configurations in
the virtual radio (to be further discussed in Section III-B).

Client ‘ Transmit/
| @ receive IQ
@ Request resources : samples

@ Allocate
resources

Resource

Manager

@ Instantiate
virtual radio

Virtual Radio

Virtual RF
front-end

Create virtual
front-end

)

Radio
Hypervisor

Real RF
Fig. 1: An example of the steps involved for negotiating
the use of resources and allocating a new virtual radio.

XVL (blue) stands as a wrapper around the radio hypervisor
(grey).

Interface
@ with the
hypervisor

Finally, XVL informs the client of the proper ways to reach
its virtual radio, e.g., through CPRI, OBSALI, or a UDP socket,
from which the clients can start transmitting or receiving I1Q
samples.

At present, XVL supports virtualisation in the frequency
domain. However, XVL separates the resource management
from the underlying technicalities of the radio hypervisor,
which allows the resource manager to be extended and
modified at ease. Thus, XVL can easily be extended for
supporting time or space instead of frequency resources, or
even incorporate time and space as new degrees of freedom in
the resource definition. It only depends on the types of radio
virtualisation that the radio hypervisor supports. Currently, the
radio resources are defined in terms of a centre frequency, a
bandwidth, a client ID, and a UDP port.

B. Independence Between Virtual Radios

Every virtual radio has a virtual RF front-end, which
the virtual radio employs for transmission and/or reception.
Each virtual RF front-end uses a fraction of the total radio
resources of the real RF front-end. The radio resources can
be defined in terms of bandwidth, timeslot, or antennas,
depending on the radio hypervisor’s approach for virtualising
the real RF front-end. Regardless of the type of radio resource,
each virtual radio must send an appropriate number of IQ
samples to the radio hypervisor at precise timing. The radio
hypervisor consumes the IQ samples of all virtual radios
at once and multiplexes the virtual RF front-ends into the
real RF front-end. The number of necessary 1Q samples per
virtual radio, however, varies depending on the amount of
radio resources per virtual RF front-end. In the case of an

Frame Buffer

1Q Sample Buffer i o

@ Timed Virtual RF 5
S 1 Input —{ITTTTH—| — — front-end - .2 o
Q Buffer . > c
fod Transmitter [
[T
o S E
© Frame Buffer T o
S 1Q Sample Buffer| __ Virtual RF o i
5 L Timed] hd

& Output - {TTTTTH— — — frontend 9]

Buffer) x

I Receiver
Virtual Radios

Fig. 2: The timed buffer consumes the received IQ samples
and generates the windows that the radio hypervisor requires.
The same process happens in the opposite direction.

FFT-based hypervisor, e.g., HyDRA, the bandwidth of each
virtual RF front-end is mapped onto a number of FFT bins.
The virtual radios must generate a number of samples equal
to the number of FFT bins to create an FFT window. Then,
the radio hypervisor multiplexes the windows of the virtual
RF front-ends together using an IFFT [17].

XVL employs timed buffers to ensure that the radio
hypervisor receives the appropriate number of IQ samples
at the right moment. Based on the overall sampling rate of
the virtual radio and the hypervisor, the timed buffers output
IQ samples at the precise moment for the radio hypervisor’s
consumption. Figure 2 illustrates the operation of timed
buffers inside a virtual radio, where UDP sockets are used for
receiving/sending IQ samples from/to remote software radios.
In the case of overflows, XVL’s internal timed buffer will start
filling, until reaching a cap. After that, incoming samples
are dropped to prevent the XVL process from overflowing
memory. In the case of underflows, XVL can either pad the
frames with missing 1Q samples with zeroes or transmit empty
frames while waiting for the missing samples. This way, the
radio hypervisor and the rest of the system will not halt
waiting for the delayed or missing IQ samples of a given
virtual radio.

The virtual radios can either operate as transmitters,
receivers, or transceivers. However, the virtual radios may
not be symmetrical in both directions, i.e., they may em-
ploy different RATs and require different amounts of radio
resources. For that reason, every virtual radio in XVL pos-
sesses completely independent transmitter and receiver chains.
Figure 2 shows an example of a virtual radio with both types
of chains: the transmit chain (top) receiving samples from a
given software radio, and the receive chain (bottom), sending
samples towards a given software radio. The radio hypervisor
may realise each type of chain in different manners, i.e.,
different virtualisation approaches, or may use different radio
hardware, i.e., different physical devices for transmission and
reception.

C. Architecture and Monitoring Capabilities

Figure 3 illustrates the overall architecture of the XVL
implementation. The clients interface with the server for
resource discovery and negotiation through ZMQ messages.
The server queries the resource manager and tries to fulfil
requests. The resource manager has a list of virtual radios
and can interact with the radio hypervisor for creating or
destroying virtual RF front-ends. Each virtual radio has an

’ Client ‘

{ ZMQ messages ‘

’ Server ‘
I
Core ‘

N ’ Virtual Radios %’ Resource Manager %{ Radio Hypervisor ‘

Monitor

I
Virtual Radio

M ’ 110

M Timed Buffers M Virtual RF front-end ‘

1Q samples Frames

Fig. 3: Block diagram of XVL’s architecture, the elements
that compose it (blue), and the elements it must interface
with (grey).

Input/Output (I/O), a timed buffer and a virtual RF front-
end, which is tied to the radio hypervisor. Aside from the
functionality for supporting services, XVL also has a monitor
utility for inspecting the KPIs of the virtual radios.

Currently, the monitoring utility is used for assessing the
use of computational resources per virtual radio. It measures
the buffer sizes, the sampling rates, and the time each virtual
radio has to fill a frame. Based on the buffer sizes, it is
possible to determine whether the software radio is presenting
overflows, i.e., buffer sizes increasing steadily, or underflows,
i.e., buffer sizes frozen at zero. We plan to extend this
mechanism to evaluate the introduced SINR degradation and
delay.

IV. EXPERIMENTAL EVALUATION

In this section, we assess the performance of XVL in
different scenarios. We evaluate XVL regarding the delay
for provisioning virtual radios, the delay introduced in the
communication pipeline, and the computational overhead. It
is worth mentioning that we perform all of the aforementioned
experimental analysis on a server equipped with an Intel Xeon
E5-2620 v2 and 4GB of RAM.

A. Integration with a Radio Hypervisor and GNU Radio

As discussed in Section III, XVL is a software layer that
sits on top of radio hypervisors and provides them with the
missing functionality for supporting RANaaS. Hence, XVL
requires the integration with an underlying radio hypervisor
to operate. Based on the literature review and analysis in Sec-
tion II-B, we opted for using HyDRA [17] as the underlying
radio hypervisor, due to HyDRA being platform agnostic and
providing an open-source prototype. We integrated XVL with
HyDRA for validating XVL’s operation and showcasing its
features. As a result of the integration with XVL, we enabled
HyDRA to support RANaaS. Furthermore, we developed a
client-side library for communicating with XVL. This library
allows any C++-based client to interface with XVL for query-
ing, requesting, and using XVL’s resources. We employ ZMQ,
a cross-platform networking library, which facilitates porting
our communication library to serve clients implemented in
other languages, e.g., Python, Java, or Ruby. We used this
library for developing GNU Radio blocks that can seamlessly
replace a USRP source/sink block in existing GNU Radio

IFFT 1024
IFFT 2048
IFFT 4096
200 1 IFFT 8192

150 - L

1004 l- I

. = SHE| B II I

64 128 256 512 1024 2048 4096 8192
Virtual Radio FFT Size

2504

Provision Delay [ms]

Fig. 4: The provisioning delay to fulfil a virtual radio request.
The time taken for creating virtual radios is proportional to
the number of allocated FFT bins, but not to the overall IFFT
size of the radio hypervisor.

flowgraphs. These blocks only require the extra information
of the IP address and port number of where an XVL instance
is running, and the client ID. The benefits of this setup are
twofold: it allows us to use an existing radio hypervisor and
GNU Radio flowgraphs for evaluating XVL, and it enables
any GNU Radio flowgraph to leverage XVL for instantiating
its virtual RF front-end.

B. Provisioning Delay

In this analysis, we are interested in the delay for pro-
visioning virtual radios with XVL. The provisioning delay
is crucial for planning and evaluating a RAN deployment
using the RANaaS paradigm, as it dictates the time interval
required to provision the virtual radios that realise the RAN.
This interval comprehends the time between the client sending
a resource request, and XVL returning the resource alloca-
tion confirmation (there are several procedures that occur
between these two events, as we have seen in Section III).
Figure 4 shows the results of our measurements for different
configurations of the virtual radio and radio hypervisor. The
exponential growth in the semi-log scale denotes a linear
behaviour in relation to the number of resources allocated
per virtual radio, regardless of the FFT size of the radio
hypervisor. We attribute the linear behaviour to the time for
allocating memory for XVL’s buffers. The worst case scenario
where a virtual radio required 8192 FFT bins took less than
300ms to be fulfilled. Hence, this result indicates that XVL
is fast enough to provision virtual radios on-the-fly.

C. Service Delay

In this analysis, we are interested in the delay that XVL
and HyDRA introduce to serve virtual radios and forward
their 1Q samples. The service delay is crucial to analyse the
impact caused by using virtualised infrastructure instead of a
real one, and to evaluate whether it can impair the operation of
the virtual radios. First, we measured the time spent by XVL
for delivering the IQ samples to the radio hypervisor, i.e.,
from successful UDP receptions, through the timed buffers,
and generation of a frame. Figure 5a shows the results of our
measurements, with a median of 343us. Then, we measured
the time spent by HyDRA to virtualise the RF front-end, i.e.,
consume the frames, multiplex the virtual RF front-ends using

1600

1400

1200 -

-
o
o
o

[}
o
o

Delay Introduced by XVL [ps]
IS ®
(=) o
=1 S

N
=]
=]

o-wLHLH %

64 128 256 512 1024 2048 4096 8192
Virtual Radio FFT Size

(a) The service delay introduced by XVL. The service delay in-
creases with the number of resources, due to the longer time required
to allocate larger frames in memory.

1600

1400

1200 4

1000

Delay Introduced by the Radio Hypervisor [ps]
[os]
o
o

600 1 T T
200 | — f———
= _ —_ =
200
0
64 128 256 512 1024 2048 4096 8192

Virtual Radio FFT Size

(b) The service delay introduced by HyDRA. The service delay
increases with the number of resources, due to the increasing
complexity of the FFT/IFFT operations.

Fig. 5: Delay measurements for different virtual radio con-
figurations. All the measurements were made using a real
bandwidth of 2 MHz and an overall FFT size of 8192 bins,
which corresponds to the worst case scenario in Section IV-B.

an IFFT, and forward the I1Q samples to the real RF front-
end. Figure 5b shows the results of our measurements, with a
median of 334us. These results show that XVL introduces a
service delay within the same order of magnitude of the radio
hypervisor. However, the overall median introduced delay by
using XVL and HyDRA for supporting RANaaS falls under
Ims. A 1ms delay can be impactful in the delay budget for
Centralised-RAN (C-RAN) scenarios, and must be taken into
account in the network planning.

D. Computational Overhead

In this analysis, we consider the computational overhead
introduced by running XVL alongside a radio hypervisor to
serve LTE and NB-IoT virtual radios. XVL and the radio
hypervisor introduce a new layer of complexity between the
software radios and the RF front-end, with an overhead that
must be quantified for assessing whether it is feasible to use
XVL. We measured the CPU utilisation for an XVL and
HyDRA instance for different IFFT sizes and normalised it as
a percentage of one CPU core. Figure 6 shows the results of
our measurements. Independently of the configuration used in
the radio hypervisor, the combination of XVL and HyDRA,

3 LTE N NB-loT M XVL+HyDRA

99.56% o
95.13% 94.63%] 98.95%

1 30.47% 29.96% 32.42% 33.70%
0

1024 2048 4096 8192
IFFT Size

Fig. 6: CPU utilisation for running XVL alongside HyDRA,
in addition to an LTE and an NB-IoT virtual radios, under
different radio hypervisor configurations.

=
o
o

@
=]

CPU Utilisation [%]
S o
o o

N
=]

the NB-IoT, and the LTE, require roughly 60%, 5% and
30% of the CPU processing power, respectively. The constant
CPU utilisation by the virtual radios is expected as their
processing is independent of the radio hypervisor. However,
we did not capture any increase in the CPU overhead for
the radio hypervisor as shown in [17]. We attribute this to
the multithreading that XVL employs for managing the timed
buffers and sockets, decreasing the significance of the CPU
utilisation of the radio hypervisor. These results indicate that
XVL can run alongside a radio hypervisor on commodity
hardware for deploying multiple virtual radios.

V. CONCLUSION

In this paper, we addressed the missing functionality
for radio hypervisors to support RANaaS. We compiled a
comprehensive list of features necessary to enable a radio
hypervisor to provide RANaaS, and we evaluated the current
state-of-the-art with respect to these requirements. Then, we
presented XVL, a software layer that can be added on top
of existing hypervisors and provides them with the missing
capabilities for using the hypervisors to support RANaaS.
We evaluated XVL regarding its provisioning delay, service
delay, and computational overhead. Our results show that
XVL provisions RAN slices in real-time, introduces a delay
comparable to a radio hypervisor, and can run on commodity
hardware. We showed that the combination of XVL with
a radio hypervisor enables the use of SDRs for RANaaS.
Moreover, we made available to the community the source
code of the implementation of XVL in the public repository:
https://bitbucket.org/joaofelipesantos/xvl/. We are continuing
to extend XVL and introduce new features, e.g., the visual-
isation of waveforms on the virtual and real RF front-ends,
and the provisioning of radio functionality, e.g., modulation
and coding, on top of the virtual radios.

ACKNOWLEDGEMENTS

The research leading to this letter received funding from
the European Horizon 2020 Program under the grant agree-
ments No. 732174 (ORCA project) and No. 732497 (5GIN-
FIRE).

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

3rd Generation Partnership Project, “3GPP TR 22.891: Feasibility
Study on New Services and Markets Technology Enablers,” 3rd
Generation Partnership Project, Tech. Rep., Sep. 2016.

——, “3GPP TR 28.801: Study on Management and Orchestration
of Network Slicing for Next Generation Network,” 3rd Generation
Partnership Project, Tech. Rep., May 2017.

5G America, “5G Americas White Paper — Network Slicing for 5G
and Beyond,” 5G America, Tech. Rep., 2016.

X. Zhou et al., “Network Slicing as a Service: Enabling Enterprises’
Own Software-Defined Cellular Networks,” IEEE Communications
Magazine, vol. 54, no. 7, pp. 146—153, 2016.

3rd Generation Partnership Project, “3GPP TR 38.801: Study on New
Radio Access Technology: Radio Access Architecture and Interfaces,”
3rd Generation Partnership Project, Tech. Rep., Mar. 2017.

J. F. Santos et al., “Orchestrating Next-Generation Services Through
End-to-End Network Slicing,” White Paper, The ORCA Consortium,
Oct. 2018. [Online]. Available: https://orca-project.eu/wp-content/
uploads/sites/4/2018/10/orchestrating_e2e_network_slices_Final.pdf

T. Taleb et al., “EASE: EPC as a Service to Ease Mobile Core Network
Deployment Over Cloud,” IEEE Network, vol. 29, no. 2, pp. 78-88,
2015.

D. Sabella et al., “RAN as a Service: Challenges of Designing a
Flexible RAN Architecture in a Cloud-Based Heterogeneous Mobile
Network,” IEEE Future Network & Mobile Summit, 2013.

R. Sherwood et al., “FlowVisor: a Network Virtualization Layer,”
OpenFlow Switch Consortium, Tech. Rep, vol. 1, p. 132, 2009.

A. Al-Shabibi et al., “Openvirtex: A Network Hypervisor,” in Open
Networking Summit (ONS), 2014.

J. van de Belt et al., “Defining and Surveying Wireless Link and
Network Virtualization,” IEEE Communications Surveys & Tutorials,
2017.

J. Sachs and S. Baucke, “Virtual Radio: A Framework for Config-
urable Radio Networks,” in ACM Conference on Wireless Internet
(WICON). ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2008, p. 61.

C. Liang and F. R. Yu, “Wireless Network Virtualization: A Survey,
Some Research Issues And Challenges,” IEEE Communications Sur-
veys & Tutorials, vol. 17, no. 1, pp. 358-380, 2015.

M. Richart et al., “Resource Slicing in Virtual Wireless Networks:
A Survey,” IEEE Transactions on Network and Service Management,
vol. 13, no. 3, pp. 462-476, 2016.

H. Wen et al., “Current Trends and Perspectives in Wireless Virtualiza-
tion,” in IEEE International Conference on Selected Topics in Mobile
and Wireless Networking (MoWNeT), 2013, pp. 62-67.

F. Fu and U. C. Kozat, “Wireless Network Virtualization as a Sequen-
tial Auction Game,” in IEEE International Conference on Computer
Communications (INFOCOM), 2010, pp. 1-9.

M. Kist et al., “SDR Virtualization in Future Mobile Networks :
Enabling Multi-Programmable Air-Interfaces,” in IEEE Internationl
Conference on Communications (ICC), May 2018.

R. Kokku et al., “NVS: A Substrate for Virtualizing Wireless Re-
sources in Cellular Networks,” IEEE/ACM Transactions on Network-
ing, vol. 20, no. 5, pp. 1333-1346, 2012.

L. Xia et al, “Virtual WiFi: Bring Virtualization from Wired to
Wireless,” in ACM SIGPLAN Notices, vol. 46, no. 7, 2011, pp. 181-
192.

X. Foukas et al., “Orion: RAN Slicing for a Flexible and Cost-Effective
Multi-Service Mobile Network Architecture,” in ACM International
Conference on Mobile Computing and Networking (MobiCom), 2017,
pp. 127-140.

K. Tan et al., “Enable Flexible Spectrum Access with Spectrum Vir-
tualization,” in IEEE Dynamic Spectrum Access Networks (DYSPAN),
2012, pp. 47-58.

E. Blossom, “GNU Radio: Tools for Exploring the Radio Frequency
Spectrum,” Linux journal, vol. 2004, no. 122, p. 4, 2004.

